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Absorbing Boundary Conditions for Adjoint
Problems in the Design Sensitivity
Anaysis With the FDTD Method
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Abstract—In this paper, absor bing boundary conditions (ABCs)
for adjoint problems with a backward time variable are derived
from first principles. It is shown that all single-layer ABCsfor the
adjoint backward time problem, which are based on the one-way
wave equation, havethe sameform asfor theoriginal forward time
problem. In the case of the adjoint perfectly matched layer (PML)
ABC, the signs before the spatial derivatives are opposite to those
in the PML ABC of the original forward time problem. To verify
thetheoretical findings, the numerical reflections from the adjoint
ABCsareinvestigated in amicrostrip-lineexample. Thereflections
from the ABCs of the forward- and backward time schemes are
shown to be identical for the same type of ABCs.

Index Terms—Absor bing boundary conditions (ABCs), adjoint
problems, design sensitivity analysis, finite-differencetime-domain
(FDTD) method, perfectly matched layer (PML).

|. INTRODUCTION

ECENTLY, an adjoint variable technique with the finite-

differencetime-domain (FDTD) method was proposed for
the design sensitivity analysis of high-frequency structures[1],
[2]. The adjoint electric- and magnetic-field vectors are shown
to satisfy a set of coupled Maxwellian curl equations subject to
homogeneous terminal value conditions. Therefore, a backward
time variable is introduced = = 7" — ¢, where ¢ is the forward
time variable and 7" isthe time at which the terminal conditions
are imposed. The sensitivity information is used to perform the
optimal shape design of a given structure. To solve the original
and the adjoint Maxwell eguations, absorbing boundary condi-
tions (ABCs) are needed.

A direct modification of existing ABCs, developed for the
original forward time scheme, asitisdonein[1] and [2], might
lead to incorrect results. There, the backward time variable is
substituted in the perfectly matched layer (PML) equations per-
tinent to the forward time problem. Thus, the sign before the
derivative with respect to the backward time variable changes.
Consequently, an artificial choice of nonphysical negative PML
conductivities is made to overcome the induced positive expo-
nential amplitude growth in the so-defined PML medium.

In this paper, we show one possible way to derive various
ABCs for adjoint problems with the backward time variable
from first principles. We consider the PML ABC, as well as
single-layer ABCs based on the one-way wave eguation (WE).
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Firstly, we show that, for the adjoint PML ABC, only the sign
beforethe spatial derivativesisoppositetothatinthePML ABC
of the original forward time problem. Secondly, we show that
all single-layer ABC equations for the adjoint problem have the
same form as the corresponding ones for the origina problem
despite the reversed time. From a physical point-of-view, this
result is not surprising since these ABCs are local in nature. At
the same time, the waves at the outer boundaries of the compu-
tational domain arelocally outgoing in the respective coordinate
systems both with forward- and backward time stepping.

[1. THEORY
A. Derivation of the PML ABC for the Adjoint Problem
Consider the adjoint problem for the backward time scheme

(1, [2]

= o
N = ——
VX Ko7
= NF =
V x M =—¢ -+ Jeprp(T —7) (1)

where the backward time variable 7 = 7" — ¢ starts at the end
of the fixed final time 7’ for the optimal shape design problem.
Jprp(T — 1) isthetime-reversed pseudoelectric current den-
sity; A¥ and A arethe time-reversed adjoint el ectric- and mag-
netic-field intensity vectors. The bar above the variables denotes
that they are functions of the backward time 7. Equations (1) are
subject to the homogeneous terminal conditions (initial condi-
tions with respect to 7)

—
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For the backward time adjoint equations, one can use any of
the methods to define a corresponding PML medium, e.g., the

stretched coordinate approach [3]. In [3], the stretched curl op-
erator is defined as
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where the stretching variables are s¢ = a¢ + o¢/(jwe), & =
x, y, z. Notethat, in the original Berenger's PML [4], e =1,
& = x,y, 2. Later, Chen et al. [5] showed that the PML loss
factor o > 1 acceleratesthe evanescent wave absorption. Inthe
PML medium, the requirement for areflectionless transmission
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o/e = o™ /p holds [4], where o and o™ are the PML electric
and magnetic conductivities.

The general procedure to the definition of the PML medium
given below follows the method outlined in [6]. There, the
PML equations are derived for applications with the forward
time WE. What makes this procedure generally applicable to
any time-domain partial differentia equations is the initial
step of mapping them into the frequency domain where the
PML derivations are made. We now apply this approach to the
adjoint system of Maxwell’ s equations.

Firstly, the time-domain equations (1) are mapped into the
frequency domain. The modified curl operator V. x isthen ap-
plied as follows:

Vo x M = jupd W x M = juedE (4

where the subscript w is used to distinguish the adjoint elec-
tric- and magnetic-field vectors in the frequency domain from
their time-domain counterpartsin (1). The current term has been
omitted, as sources are unlikely to exist inthe PML. For brevity,
the derivations for the z-components of the adjoint PML equa-
tions only are given hereafter. The z-components of (4) are

sy Oy
- 1 ONE 1 9AE
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The equations in (5) are split so that each subcomponent de-
pends on one spatial derivative. The stretching variablesand re-
flectionlesstransmission relation are then applied. Thus, thefre-
quency-domain adjoint PML ABCs are obtained as
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Thelast step isto map back the 12 PML equationsinto thetime
domain

axe o o(XE )
eay — - +oyAn, =— oy
axify myH a(Xfm + Xfy)
coor Fres Az
H B A AE, +2\E
po, 202z 4 gmRH M @)
ar dz

The above equations give the general modified perfectly
matched layer (MPML) ABC for a reversed time problem. It
should be emphasized that the MPML conductivities ¢, and
loss factors e (¢ = =z, y, z) have positive values both for
the forward and backward time schemes. The modification
of the forward time PML ABC into a backward time PML
ABCin[1] and [2] is mathematically unsound and leads to the
physicaly unsound assumption that the backward time PML
has negative el ectric conductivities and magnetic losses. Ascan
be seen from (7), the correctly defined adjoint (backward time)
PML ABC absorbs both propagating and evanescent outgoing
adjoint waves. The PML equations suggested in [1] and [2] are
a specia case of (7) with o = 1, { = x, y, 2. Notice that
the difference between the PML ABCs for the original and
adjoint problems is actually in the signs in front of the spatial
derivatives at the right-hand sides of the PML equations rather
than the signs of the PML conductivities.

B. Derivation of ABCs Based on the One-Way WE

In some problems, especially in the case of guiding struc-
tures, in some particular (lateral) directions, there is very little
electromagnetic energy to be absorbed. Other considerations
may aso be important, e.g., the simplicity of implementa-
tion, the minimal additional computational overhead, and the
discretization possible with little or no additional memory re-
quirements. In such cases, single-layer ABCs are preferable,
e.g., Engquist—Majda’s one-way WE ABC [7], Mur's ABCs
[8], or the dispersive boundary conditions (DBCs) [9].

The WE corresponding to the adjoint problem is easily
obtained by taking a curl of the first equation in (1) and
substituting in it the time derivative with respect to the reversed
time variable 7 of the second equation

_ CVAHFE =, 6)

Here, a unified approach will be described to the derivation of
the above-mentioned single-layer ABCs. The WE (8) can be
written in the operator form

(L2 — *V2)XE =0 ©)

where L = §/8r and the velocity of propagation is
v = (ue)~2. Its one-dimensiona (1-D) version in the
direction of propagation (and absorption), the &-direction,
&=z, y, z, will be

L+L- {iE} -0 (10)
where the wave operators LT and L, corresponding to the for-
ward and backward wave propagation, respectively, are

Lt =L +v:9/0¢
L~ =L — v/t

(11)
(12)

Here, v, is the velocity of propagation in the £-direction, £ =
‘T7 y? Z.

Three single-layer ABCs for the backward time-stepping
agorithm are described bel ow.
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1) The one-way WE ABCs corresponding to (11) and (12)

are, respectively,
1 OAF . ONE Y
g g N
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1 9E  9NF
- - =0 13
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in which the first-order approximation of the velocity
of propagation in the ¢-direction is used (v = ).
The boundaries aong the £-axis are at &, and &ax,
respectively.

2) For Mur’s second-order ABC for the adjoint problem, the
general procedure givenin [8] isused. Thus, at & = {ax

PNE 42 <a2iE a2§E>

92NE
a2~ Yatar T2 \ a2 T a2

(14)

3) Similarly, concatenating two one-way WEs with dif-
ferent propagation velocities, corresponding to different
frequencies of interest, the second-order DBC for the
adjoint problem can be obtained at £ = &, @S

1 9 g 1 9 a\ 2k

<1115 or * ag) <1125 ar * ag>{A j=o
Note that all single-layer ABC equations for the adjoint
problem are identical with the ABCs for the origina
problem despite the reversed time. This result is due to
the local nature of these ABCs. At the boundaries of
the respective computational domain, both with a for-
ward and backward time scheme, the waves are locally
outgoing.

(15

I11. NUMERICAL EXAMPLES

The performance of the ABCs for the adjoint problem was
tested on the example of amicrostrip line of widthw = 0.6 mm
printed on a dielectric substrate of relative dielectric permit-
tivity ,, = 9.6 and height 4~ = 0.6 mm. The excitation is the
z-component of the adjoint electric field AZ, which is normal
to the strip. It is uniformly distributed in the transverse plane
under the microstrip line and is a Gaussian pulse in time so
that its form is the same both for the forward and backward
time variables. Its spectrum covers the frequency band from 0
to 50 GHz. The size of the computational domain is (300 Az,
76 Ay, 56 Az) for thesingle-layer ABCsand (300 Az, 46 Ay,
26 Az) for the PML ABC, where Az = Ay = Az = 0.1 mm.
The parameters of the PML ABC are the: 1) number of
layers in the absorber Npnr, = 8; 2) reflection coeffi-
cient at normal incidence Ry = 10~2; 3) PML conductivity
o(p) = —(ng+1)eoeln(Ro)(p/6)"™ /(26),0 < p < 8,1, = 4
and n, = 3; and 4) PML lossfactor a(p) = 1 + epnax(p/6)",
0 < p <6, na = 3, emax = 1. Here, p is the depth in-
side the PML medium, 6 is the thickness of the PML, and
¢ = (pogo) /2. The reflection is calculated using the ratio of
the reflected and incident z-component of the adjoint electric
fild Ryg = 20log,, |§{A\7¢/'}/F{A"¢}|, where § denotes
the Fourier transform of the respective time-dependent field
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Fig. 1. Spectrum of the reflection for the adjoint problem using four
different ABCs. (D: one-way WE ABC. (®: second-order DBC. (®: Mur's
second-order ABC. (3: PML ABC (Npmr, = 8, Rg = 1073, crax
ne = 3,1, = 3). ®:PMLABC (Wpuyz = 8, Ro = 1072, €pax
Ne = 3,ns = 4).

:]Y
=1,

component. In the cases of single-layer ABCs, the time guard
between the incident and reflected field suffices to separate
them. In the case of the PML, deembedding with a microstrip
line of double length is used since the level of the reflections
is extremely low.

The three-dimensional computational domain is terminated
in al directions (except the ground plane) by the four types
of ABCs derived in Section I1: the one-way WE ABC, Mur’s
second-order ABC, the DBC, and the PML ABC. Their re-
spective reflections for the reversed-time problem are shown in
Fig. 1. Thereflectionsfor the sametypesof ABCs, whenthefor-
ward time problem is considered, coincide with the ones shown
inFig. 1.

IV. CONCLUSION

In this paper, ABCsfor adjoint problems with backward time
variable are derived from first principles. It is shown that all
single-layer ABCs for the adjoint problem, which are based on
the one-way WE, have the same equations as for the original
forward time problem, despite the reversed time. In the adjoint
PML ABC case, the signs of the spatial derivatives are opposite
to thosein the PML ABC of the original forward time problem.
These rigorously obtained results are consistent with the fact
that, for both the original and adjoint problems, the waves are
locally outgoing at the outer boundaries. To verify the theoret-
ical findings, the reflectionsin amicrostrip-line example are in-
vestigated so that metal and inhomogeneous diel ectricsintersect
the PML boundary. Thereflections of the forward and backward
time schemes are identical for the same type of ABCs.
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